
IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.57147 727

Detection and Prevention of SQL Injection in a

Web Application Using Secure Object Relational

Mapping Approach

Siddhesh Bhagat
1
, Dr. R. R Sedamkar

 2
, Prachi Janrao

3

Student, Computer Department, Thakur College of Engineering and Technology, Mumbai, India1

Professor, Computer Department, Thakur College of Engineering and Technology, Mumbai, India2

Assistant Professor, Computer Department, Thakur College of Engineering and Technology, Mumbai, India3

Abstract: Many modern web based systems are presently following 3-tier architecture for implementation of enterprise

application. However rare use of modern frameworks and standards in this kind of applications, these applications are

more vulnerable to attack that can breach and steal confidential information stored in database. One of the attack known

as SQL injection is a very serious and flawless way to retrieve data without leaving any traces behind process. This

paper addresses a solution for this kind of serious problem in a novel way which not only provides efficient solution but

acquire a modern coding standard which developers follow. This new approach called as ORM technique. ORM is a

Object Relational Mapping where we maps the table architecture with corresponding Object and use those objects to

retrieve data instead of getting data from database directly . Hence it creates a indirect barrier from firing SQL query
which helps us to prevent our important information from direct access. As it also follows standard of coding this ORM

Methodology satisfies desired criteria of highly cohesive with loose coupling while coding.

Keywords: ORM, Hibernate, SQLIA, LDAP, FCD, SSC, T-SQL.

I. INTRODUCTION

WEB applications are those applications which we access

over internet with the help of any of the web compliant

browser like Internet explorer, Google chrome, Opera mini

and many more. They are invariably available due to the
handiness, suppleness, accessibility, and interoperability

that they provide. Unfortunately, over a network nothing is

secure. Hence our web applications are more susceptible

to many kinds of security threats. SQL Injection Attacks

(SQLIAs) are one of the serious such threats [1].

SQLIAs have become increasingly frequent and creates

very solemn security risks because they can give attackers

unlimited access to the databases that triggers Web

applications. Web applications interface with databases

that have information such as employee names,

preferences, credit card numbers, purchase orders, and so

on. Web applications construct SQL queries to access

these databases based, in part, on user-provided input. The

motive is that Web applications will limit the kinds of

queries that can be generated to a safe subset of all

potential queries, regardless of what type of input users
provide. However, inadequate input validation can enable

attackers to get complete access to such databases. One

way in which this happens is that attackers can present

input strings that contain specially builds a query by using

these strings and sends the query to its underlying

database, the attacker’s embedded commands are driven

by the database and the attack happens. The results of

these attacks are often devastating and can range from

leaking of sensitive data (for example, employee data) to

the destruction of database contents. Researchers have

defined a wide range of alternative techniques to address

SQLIAs, but many of these solutions have certain
limitations that affect their effectiveness and practicality.

For example, one known type of solutions is based on

defensive coding application, which has been less than

successful for three main reasons. First, it is difficult to

implement and enforce a meticulous defensive coding

discipline. Second, many solutions based on defensive

coding deal with only a subset of the possible attacks.

Third, legacy software poses a particularly tricky problem

because of the cost and complexity of modifying existing

code so that it is compliant with defensive coding

practices. In this method, we propose a new highly

automated approach for dynamic detection and prevention

of SQLIAs. Intuitively, our approach works by recognize

“trusted” strings in an application and allowing only these

trusted strings to be used to create the explanation relevant

parts of a SQL query such as keywords or operators. The
general mechanism that we use to implement this

technique is based on dynamic tainting, which marks and

tracks certain data in a program at runtime. The kind of

dynamic tainting that we use gives this method several

important advantages over methods based on other tools.

Many methods depend on complex static analyses in order

to find potential vulnerabilities in the code. These types of

conservative static analyses can produce big rates of false

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.57147 728

positives and can have scalability issues when size of

application increased. To make web application more

secured and we will use ORM hibernate tool.

II. LITERATURE SURVEY

In this reference [2] author has presented a novel fully

automated technique, TransSQL, for preventing SQL

injection attacks. The technique is based on the intuition

that injection codes implicitly perform a different meaning

from general queries. The author presented an elaborate

environment based on LDAP for distinguishing legitimate

and malicious queries. To complete this task, TransSQL is

consisted with preprocessing step and runtime step. In the

preprocessing step, the technique uses an existing SQL

command to extract from SQL database a file which
contains whole information of SQL database. According

to the sqldump file, TransSQL generates a duplicated

database in LDAP form. In runtime step, TransSQL

monitors connection between web applications and SQL

databases. Every query would be translated into a LDAP-

equivalent query, and then we defined some conditions to

identify malicious queries.[2]

In this method, to make SQL injection attack, an attacker

should necessary use a space, double quotes and double

dashes in his input. The method to detect one of the above

symbols has been discussed. This method consists of
tokenizing original query and a query with injection and

after if it is found that extra symbols used in user input, so

the injection is detected. This approach consists of

tokenizing the original query and the query with sql

injection attack and after tokens are generated they

constitute arrays' elements. By comparing lengths of the

output arrays from the two queries injection attack can be

detected. The work presented in this method has been

implemented using java codes [4].

This method explains that many web applications employ
a middleware technology designed to request information

from a relational database management system in SQL

speech. SQL injection is a one of the techniques hackers

enlist to attack underlying databases. These attacks

reshape the SQL queries, thus altering the behavior of the

program for the use of the hacker. Several solutions exist

to prevent SQLIAs at the application layer, but no fix

solution other than using parameters while coding exist to

protect stored procedures in the database layer against

SQLIAs. In this paper, it present a fully automated

technique for detecting, preventing and result of SQLIA

attacks in stored procedures. The technique explains the
intended SQL query behavior in an application in the form

of an SQL-graph, as a one-time offline steps using static

analysis of the stored procedure present in the source code

[6].

In this technique they describe two character distribution

models; the FCD and SCC models. They have shown that

the SCC model is good at detecting SQL injection attacks

in general, as well as being more accurate than the FCD

model overall. it also assess the models' effectiveness at

detecting the UNION and Tautology classes of SQL

injection attacks. While the SCC model is better to the

FCD model at detecting both of these types of SQL
injection attacks, they have also explained that character

distribution models are much better for detecting UNION

attacks than this Tautology attacks. This result was not

completely unexpected due to the precise nature of

Tautology attacks. It also showed that the SCC model is

effective at detecting muddle attacks. The approach

handled by parsing the query part of HTTP requests and

generates view for each file. It does not required access to

the source code and modification of existing software

modules. Additionally, they explained that this proposed

approach does not need user interaction or the introduction
of user defined data types to reduce false alerts [7].

In this method, they proposed a structure for development

of runtime monitors used to do post-deployment

monitoring of the software to detect and prevent tautology

based SQLIAs. Thus using this proposed framework this

ensures that the quality and security of software is

achieved not only through its pre-deployment phase also

during its post-deployment phase and any possible misuse

of vulnerability in the software by an outsider attacker is

found and prevented. It further intends to automate the

entire process of using the proposed structure to develop
the runtime monitors and also extend this structure to

detect and prevent the other types of attacks [9].

III. PROPOSED METHODOLOGY

It is a two-step process which is explained with the help of

work flow mentioned in the below figures.

First is a simple login application which is developed by

traditional way of implementation using 3-tier architecture

of client server database model where SQL injection is
detected with the help of test cases and it is observed that

most of the confidential data can be fetched by breaching

authentication process.

Fig. 1 Normal architecture with SQL injection possibility

Second is a secured way of architecture where SQL

Preventer plays a significant role by not allowing direct

access and filter all queries which can breach security and

cause SQL injection.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.57147 729

This Preventer is consisting of an Object relational

Mapping tool called as ORM Hibernate tool.

It is a ORM tool used to map the objects in java into its

corresponding table automatically without righting a
single native SQL Query. It helps in making your system

independent of database vendors. It reduces the coding by

removing repetitive codes called as boilerplate codes that

are used for database connection every time whenever we

require fetching or inserting data inside database. Its

configuration file helps us to create tables for required

Objects.

Fig. 2 Login using SQL preventer tool

A. Hibernate

Create relationship among Objects automatically. And
most importantly it provides facility of caching which

saves frequently used data items also

Fig. 3 Hibernate architecture

Fig. 4 Normal login verify data line graph

Fig. 5 Fetch data for normal login line graph

Fig. 6: Protected login verify data line graph

IV. RESULT ANALYSIS

A. Performance Analysis

Here first Normal Login timings and data fetch timing

readings are taken and its impact on increasing number of

users is observed and then next with an overhead of our

SQL preventer it is again check to see performance
changes.

Here it has been observed that after introducing SQL
preventer tool it’s a reasonable amount of delay occurs as

compare to normal login which is acceptable for standard

development. And in any case it is preventing data by not

allowing SQL injection based data and makes it more

efficient by storing or caching frequently used data.

IJARCCE
ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.57147 730

V. CONCLUSION

This paper presented a framework based approach which

confirms with coding standards followed by modern

developers for protecting web application from SQLIA.
Our approach consists of indirect access of database to

prevent SQLIAs by using any of the ORM tools. That

treats tables as synonymous Objects and provide

alternative of native SQL queries to protect confidential

data. It has been tested with this approach Hibernate ORM

tool which is an Object Relational Mapping tools which

support HQL which automatically converts persistent

objects into a table required for any database.

Fig. 7 Fetch data for preventive line graph

Our preliminary test shows that there is a marginal
overhead in timing consumes by SQL Preventer which

first intercepts any direct request to fetch data from

database via its own way which filters SQL injections and

it is acceptable for any kind of real time Enterprise

application development.

VI. FUTURE SCOPE

Through hibernate is very prevalent now a days for using

big projects however our testing was confined with

medium sized web applications. In future one can test this
approach with big banking applications, MIS Systems

many more which are real enterprise application consisting

from pre sign on to post sign on Activity with so many

complex modules which requires high level of special

security designing.

REFERENCES

[1] William G.J. Halfond, Alessandro Orso, Member, IEEE Computer

Society, and Panagiotis Manolios,” WASP: Protecting Web

Applications Using Positive Tainting and Syntax-Aware

Evaluation”, Member, IEEE Computer Society IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34,

NO. 1, JANUARY/FEBRUARY 2008.

[2] Kai-Xiang Zhang, Chia-Jun Lin Engineering, Shih-Jen Chen, Inst

Yanling, Hao-Lun Huang, Fu-Hau Hsu Computer Science & Info.

Engineering TransSQL:” A Translation and Validation-based

Solution for SQL-Injection Attacks”, 2011 First International

Conference on Robot, Vision and Signal Processing

[3] C. Anley. Advanced SQL Injection In SQL Server Applications.

White paper, Next Generation Security Software Ltd., 2002.

[4] NTAGWA BIRA Lambert, KANG Song Lin,” Use of Query

Tokenization to detect and prevent SQL Injection Attacks”,

IEEE2010.

[5] Nuno Antunes and Marco Vieira. Detecting SQL Injection

vulnerabilities in web services. IEEE, 2009.

[6] Ke Wei, M. Muthuprasanna, Suraj Kothari,” Preventing SQL

Injection Attacks in Stored Procedures”, Proceedings of the 2006

Australian Software Engineering Conference (ASWEC’06) 1530-

0803© 2006 IEEE.

[7] Mehdi Kiani, Andrew Clark and George Mohay,” Evaluation of

Anomaly Based Character Distribution Models in the Detection of

SQL Injection Attacks”, The Third International Conference on

Availability, Reliability and Security

[8] W. Halfond and A. Orso, "Combining Static Analysis and Runtime

Monitoring to Counter SQL-Injection Attacks," Proceeding of the

Third International ICSE Workshop on Dynamic Analysis (WODA

2005), 2005.

[9] Ramya Dharam and Sajjan G. Shiva,” Runtime Monitors for

Tautology based SQL Injection Attacks”,ICS 2002

[10] J. Saltzer and M. Schroeder, “The Protection of Information in

Computer Systems,” Proc. Fourth ACM Symp. Operating System

Principles, Oct. 1973.

[11] Y. Xie and A. Aiken, “Static Detection of Security Vulnerabilities

in Scripting Languages,” Proc. 15th Usenix Security Symp., Aug.

2006.

[12] C. Anley, “Advanced SQL Injection In SQL Server Applications,”

white paper, Next Generation Security Software, 2002.

[13] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A Static Analysis

Tool for Detecting Web Application Vulnerabilities,” Proc. IEEE

Symp. Security and Privacy, May 2006.

